Theory of Finite Deformations of Porous Solids
نویسندگان
چکیده
1. Introduction. The linear mechanics of fluid-saturated porous media as developed by the author was reviewed and discussed in detail in two earlier papers [l], [2]. In its final form it is based on the linear thermodynamics of irreversible processes. It is applicable to the most general case of anisotropy and includes not only the basic principles of classical thermodynamics but also the effects of coupled flows of irreversible processes. Thermoelastic dissipation is also implicit since the heat flux is nothing but one of the internal thermo-dynamic coordinates of the system. The solid matrix itself may be viscoelastic. Actually the theory is even more general since it takes into account the visco-elastic interaction of the fluid with the solid.due to the micromechanics of fluid penetration in cracks which are much smaller than the pores. An important concept derived from the existence of a dissipation function for the fluid is that of " Viscodynamic operator " [2]. This is an operational symmetric tensor which describes the frequency-dependent behavior of the fluid. The symmetric character of this tensor leads to important conclusions in the theory of acoustic propagation. Regarding the extension to non-linear problems a first step is constituted by a theory which introduces the non-linear superposition of a state of initial stress and incremental deformations [3]. This also leads to an analysis of finite deformations based on stress-rates. In this case the deformation is considered as a continuous sequence of incremental deformations 141. The concepts and methods introduced in this incremental theory lead quite naturally to the next development which considers a description of finite deformation using material coordinates. In particular the concept of pressure function for a porous medium which was introduced in the theory of incremental deformations [3] provides one of the essential means by which this extension of the theory can be accomplished. The mechanics of porous media is thus brought to the same level of development of the classical theory of finite deformations in elasticity. In order to restrict the length of the paper, the theory is presented in the context of quasi-static and isothermal deformations.
منابع مشابه
Thermal Buckling Analysis of Graphene Nanoplates Based on the Modified Couple Stress Theory using Finite Strip Method and Two-Variable Refined Plate Theory
Graphene is one of the nanostructured materials that has recently attracted the attention of many researchers. This is due to the increasing expansion of nanotechnology and the application of this nanostructure in technology and industry owing to its mechanical, electrical and thermal properties. Thermal buckling behavior of single-layered graphene sheets is studied in this paper. Given the fai...
متن کاملBuckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory
In this paper, static response and buckling analysis of functionally graded saturated porous beam resting on Winkler elastic foundation is investigated. The beam is modeled using higher-order shear deformation theory in conjunction with Biot constitutive law which has not been surveyed so far. Three different patterns are considered for porosity distribution along the thickness of the beam: 1) ...
متن کاملNumerical Evaluation of Hydraulic Fracturing Pressure in a Two-Phase Porous Medium
Hydraulic fracturing is a phenomenon in which cracks propagate through the porous medium due to high pore fluid pressure. Hydraulic fracturing appears in different engineering disciplines either as a destructive phenomenon or as a useful technique. Modeling of this phenomenon in isothermal condition requires analysis of soil deformation, crack and pore fluid pressure interactions. In this paper...
متن کاملChapter 1 Poromechanics of saturated isotropic nanoporous materials
1.1 Abstract Poromechanics offers a consistent theoretical framework for describing the mechanical response of porous solids. When dealing with fully saturated nanoporous materials, which exhibit pores of the nanometer size, additional effects due to adsorption and confinement of the fluid molecules in the smallest pores must be accounted for. From the mechanical point of view, these phenomena ...
متن کاملArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کامل